1、非结构化数据是数据结构不规则或不完整,没有预定义的数据模型,不方便用数据库二维逻辑表来表现的数据。非结构化数据其格式非常多样,标准也是多样性的,而且在技术上非结构化信息比结构化信息更难标准化和理解。半结构化数据具有一定的结构性,是一种适于数据库集成的数据模型。
2、相对于结构化数据(即行数据,存储在数据库里,可以用二维表结构来逻辑表达实现的数据)而言,不方便用数据库二维逻辑表来表现的数据即称为非结构化数据,包括所有格式的办公文档、文本、图片、XML、HTML、各类报表、图像和音频/视频信息等等。
3、非结构化数据是数据结构不规则或不完整,没有预定义的数据模型,不方便用数据库二维逻辑表来表现的数据。包括所有格式的办公文档、文本、图片、XML, HTML、各类报表、图像和音频/视频信息等等。
4、结构化数据,简单来说就是数据库。结合到典型场景中更容易理解,比如企业ERP、财务系统;医疗HIS数据库;教育一卡通;政府行政审批;其他核心数据库等。这些应用需要哪些存储方案呢?基本包括高速存储应用需求、数据备份需求、数据共享需求以及数据容灾需求。
5、半结构化数据介于结构化数据和非结构化数据之间,它们具有一定的结构性。例如,对象交换模型(OEM)就是一种常见的半结构化数据模型。在信息系统设计中,设计师经常会遇到半结构化数据,这些数据通常以某种结构性存在,但不像传统数据库中的数据那样严格。
而统一数仓层是 按照业务易理解的角度或者是业务分析的角度 进行数据组织的,定义了一致的指标、维度,各业务板块、数据域都是按照统一的规范来建设,从而形成统一规范的 标准业务数据体系 ,它们通常都是基于Kimball的维度建模理论来构建的, 并通过一致性维度和数据总线来保证各个子主题的维度一致性。
数据仓库,这座企业决策的智慧宝库,通过整合多元数据,为企业提供有力支持。它的架构如同一座精心设计的城市,由数据仓库(主题导向,集成优化)、数据湖(原始数据的海洋)和湖仓一体(一体化数据底座,兼顾历史与实时查询)共同构成,构建起数据驱动的决策基石。
建模方式及原则: 本篇文章主要讲解数仓项目中为什么分层,比如 我们在完成一个需要的需求的时候也许只需要一个复杂的SQL语句就可以完成。
说到数仓建模,就得提下经典的2套理论:数仓的建模或者分层,其实都是为了更好的去组织、管理、维护数据,实际开发时会整合2种方式去使用,当然,还有些其他的,像Data Vault模型、Anchor模型,暂时还没有应用过,就不说了。维度建模,一般都会提到星型模型、雪花模型,星型模型做OLAP分析很方便。
数据分析的步骤一般包括分析设计,数据收集,数据处理等。分析设计。是明确数据分析目的,只有明确目的,数据分析才不会偏离方向。数据收集。数据收集是按照确定的数据分析框架,收集相关数据的过程,它为数据分析提供了素材和依据。数据处理。
数据分析是指用适当的分析方法及工具,对收集来的数据进行分析,提取有价值的信息,形成有效结论的过程。在确定数据分析思路阶段,数据分析师就应当为需要分析的内容确定适合的数据分析方法。到了这个阶段,就能够驾驭数据,从容地进行分析和研究了。
完整的数据分析主要包括了六大步骤,它们依次为:分析设计、数据收集、数据处理、数据分析、数据展现、报告撰写等,所以也叫数据分析六步曲。①分析设计 首先是明确数据分析目的,只有明确目的,数据分析才不会偏离方向,否则得出的数据分析结果不仅没有指导意义,亦即目的引导。
数据分析:使用统计学、数据挖掘或机器学习方法对处理后的数据进行深入分析。这一步骤的目标是从数据中提取有价值的信息和洞察。 数据展现:将分析结果通过图表、报表和可视化工具呈现出来,以便于用户理解和决策。 报告撰写:最后,根据分析结果和展现的图表,撰写数据分析报告。
第三是搜集目的是否清晰,搜集的数据是否真实,充沛,信息通道是否畅通。第四,数据剖析办法是否合理,危险是否操控在可接受的范围内;实用数据剖析所需的资源是否得到确保。关于数据分析一般有哪些步骤,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。
方法/步骤 明确分析目的 明确数据分析的目的,才能确保数据分析有效进行,为数据的采集、处理、分析提供清晰的指引方向。数据收集 数据收集按照确定的数据分析的目的来收集相关数据的过程,为数据分析提供依据。一般数据来源于数据库、互联网、市场调查、公开出版物。